

2-pack-integrated intelligent Power System

SKiiP 3614 GB12E4-6DUW V2

Features*

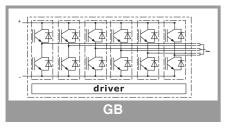
- Intelligent Power Module
- Integrated current and temperature measurement
- Integrated DC-link measurement
- Solder free power section
- IGBT4 and CAL4F technology
- T_{jmax} = 175°C
- Safety isolated switching and sensor signals
- Digital signal transmission
- CAN Interface
- 100% tested IPM
- RoHS compliant
- UL file no. E242581

Typical Applications

- Renewable energies
- Traction
- Elevators
- Industrial drives

Remarks

For further information please refer to SKiiP®4 Technical Explanation


Footnotes

¹⁾ With assembly of suitable MKP capacitor per terminal

 $^{2)}$ The specified maximum operation junction temperature T_{vjop} is 150°C

	Maximum Rati	iigs		1
Symbol	Conditions		Values	Unit
System				
V _{CC} ¹⁾	Operating DC li	nk voltage	900	V
Visol	DC, t = 1 s, eac	h polarity	4300	V
I _{t(RMS)}	per AC terminal	, rms, sinusoidal current	500	А
I _{max (peak)}	max. peak curre	ent of power section	5400	А
I _{FSM}	T _j = 175 °C, t _p =	10 ms, sin 180°	16547	А
l²t	$T_j = 175 \ ^{\circ}C, t_p =$	10 ms, diode	1369	kA ² s
f _{out}	fundamental ou (sinusoidal)	tput frequency	1	kHz
T _{stg}	storage tempera	ature	-40 85	°C
IGBT				!
V _{CES}	T _i = 25 °C		1200	V
lc	T 175 00	T _s = 25 °C	4664	Α
	T _j = 175 °C	T _s = 70 °C	3792	Α
I _{Cnom}			3600	Α
T _j ²⁾	junction temperature		-40 175	°C
Diode				·
V _{RRM}	T _j = 25 °C		1200	V
l _F	T 175 00	T _s = 25 °C	3558	Α
	−T _j = 175 °C	T _s = 70 °C	2821	Α
I _{Fnom}			3600	А
T _j ²⁾	junction temperature		-40 175	°C
Driver	·			•
Vs	power supply		19.2 28.8	V
V _{iH}	input signal voltage (high)		V _s + 0.3	V
dv/dt	secondary to primary side		75	kV/μ
f _{sw}	switching freque	ency	5	kHz

Characte	ristics					
Symbol	Conditions	min.	typ.	max.	Unit	
IGBT						
V _{CE(sat)}	I _C = 3600 A	T _j = 25 °C		2.01	2.26	V
	at terminal	T _j = 150 °C		2.49	2.69	V
V _{CE0}		T _j = 25 °C		0.80	0.90	V
		T _j = 150 °C		0.70	0.80	V
r _{CE}	at terminal	T _j = 25 °C		0.34	0.38	mΩ
	allenninai	T _j = 150 °C		0.50	0.53	mΩ
$E_{on} + E_{off}$	I _C = 3600 A	V _{CC} = 600 V		1405		mJ
	T _j = 150 °C	V _{CC} = 900 V		2520		mJ
R _{th(j-s)}	per IGBT switch				0.0106	K/W
R _{th(j-r)}	per IGBT switch				0.0077	K/W

2-pack-integrated intelligent Power System

SKiiP 3614 GB12E4-6DUW V2

Features*

- Intelligent Power Module
- Integrated current and temperature measurement
- Integrated DC-link measurement
- Solder free power section
- IGBT4 and CAL4F technology
- T_{jmax} = 175°C
- Safety isolated switching and sensor signals
- Digital signal transmission
- CAN Interface
- 100% tested IPM
- RoHS compliant
- UL file no. E242581

Typical Applications

- Renewable energies
- Traction
- Elevators
- Industrial drives

Remarks

For further information please refer to SKiiP®4 Technical Explanation

Footnotes

¹⁾ With assembly of suitable MKP capacitor per terminal

 $^{2)}$ The specified maximum operation junction temperature T_{vjop} is 150°C

driver
GB

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
Diode						
$V_F = V_{EC}$	I _F = 3600 A	T _j = 25 °C		2.33	2.65	V
	at terminal	T _i = 150 °C		2.35	2.66	V
V _{F0}		T _i = 25 °C		1.30	1.50	V
	-	T _i = 150 °C		0.90	1.10	V
r _F		T _i = 25 °C		0.29	0.32	mΩ
	at terminal	T _i = 150 °C		0.40	0.43	mΩ
E _{rr}	I _F = 3600 A	V _R = 600 V		238		mJ
	T _j = 150 °C	V _R = 900 V		300		mJ
R _{th(j-s)}	per diode switch				0.0187	K/W
R _{th(j-r)}	per diode switch				0.0158	K/W
Driver						
Vs	supply voltage non	stabilized	19.2	24	28.8	V
I _{S0}	bias current @V _s =	$24V, f_{sw} = 0, I_{AC} = 0$		315		mA
I _S	$k_1 = 48 \text{ mA/kHz}$, $k_2 = 0,000063 \text{ mA/A}^2$, $f_{out}=50\text{Hz}$, sinusoidal current		= 315	+ $k_1 * f_{sw}$	+ $k_2 * l_{AC}^2$	mA
V _{IT+}	input threshold voltage (HIGH)		0,7*V _s			V
V _{IT} .	input threshold voltage (LOW)				0,3*V _s	V
R _{IN}	input resistance			13		kΩ
C _{IN}	input capacitance			1		nF
t _{pRESET}	error memory reset time			500		ms
t _{pReset(OCP)}	Over current reset time					μs
t _{TD}	top / bottom switch interlock time			3		μs
t _{jitter}	jitter clock time			50	58	ns
t _{SIS}	short pulse suppre	ssion time		0.6		μs
t _{POR}	Power-On-Reset c	ompleted			1	S
I _{digiout}	digital output sink current (HALT-signal)				16	mA
V _{it+ HALT}	input threshold voltage HIGH HALT (Low>High)		0,6*V _s			V
V _{it-HALT}	input threshold voltage LOW HALT (High> Low)				0.4*V _s	V
t _{d(err)}	Error delay time (from detection to HALT), (depends on kind of error)		3		370	μs
ITRIPSC	over current trip lev	/el	5400			A _{PEAK}
I _{LL}				n.a.		A _{PEAK}
T _{trip}	over temperature ti	rip level	128	135	142	°C
T _{DriverTrip}	over temperature F	PCB trip level	113	120	124	°C
V _{DCtrip}	over voltage trip lev	vel,	950	980	1010	V
V _{DCtripLL}				n.a.		V

2-pack-integrated intelligent Power System

SKiiP 3614 GB12E4-6DUW V2

Features*

- Intelligent Power Module
- Integrated current and temperature measurement
- Integrated DC-link measurement
- Solder free power section
- IGBT4 and CAL4F technology
- T_{jmax} = 175°C
- Safety isolated switching and sensor signals
- Digital signal transmission
- CAN Interface
- 100% tested IPM
- RoHS compliant
- UL file no. E242581

Typical Applications

- Renewable energies
- Traction
- Elevators
- Industrial drives

Remarks

For further information please refer to SKiiP®4 Technical Explanation

Footnotes

¹⁾ With assembly of suitable MKP capacitor per terminal

 $^{2)}$ The specified maximum operation junction temperature T_{vjop} is 150°C

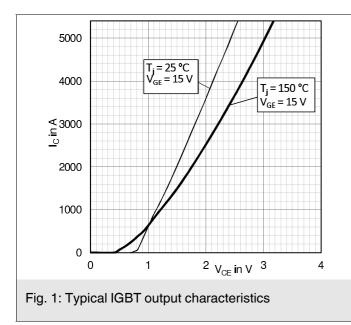
GB

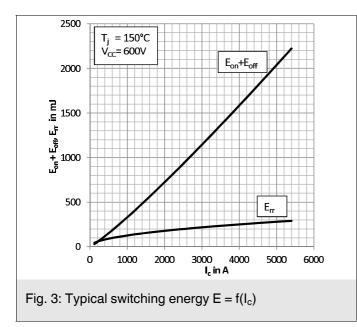
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
System						
t _{d(on)} IO	$V_{CC} = 600 V$	turn on propagation delay time		2.8		μs
t _{d(off)IO}	$T_j = 25 ^{\circ}C$	turn off propagation delay time		3.8		μs
dV_{CE}/dt_{on}	T 05 %C	I _C = 0 A		9		kV/μs
	T _j = 25 °C V _{CC} = 600 V	I _C = 3600 A		3		kV/μs
dV_{CE}/dt_{off}		I _C = 3600 A		3		kV/μs
R _{th(s-a)}	flow rate = 15 l/min, T _{Fluid} =40°C, water/glycol ratio 50%:50%				0.0051	K/W
R _{CC'+EE'}	measured per switch, $T_s = 25 \text{ °C}$			0.045		mΩ
L _{CE}	commutation inductance			3		nH
C _{CHC}	coupling capacitance secondary to heat sink			8.4		nF
C _{ps}	coupling capacitance primary to secondary			0.102		nF
$I_{CES} + I_{RD}$	$V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, \text{T}_{j} = 25 ^{\circ}\text{C}$			0.527		mA
M _{dc}	DC terminals		6		8	Nm
M _{ac}	AC terminals		13		15	Nm
w	SKiiP System w/o heat sink			4.84		kg
Wh	heat sink			5.77		kg

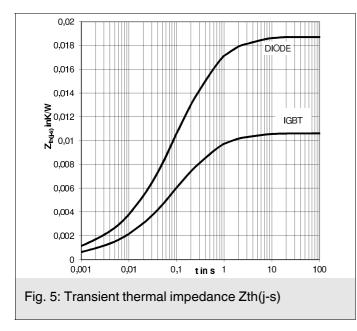
© by SEMIKRON

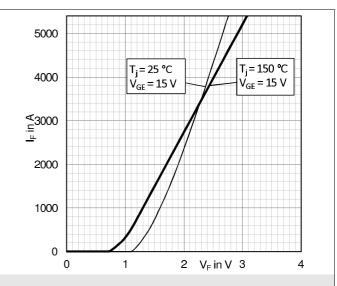
Isolation coordination acc. to EN 50178 and IEC 61800-5-1	
Maximum grid RMS voltage, line-to-line, grounded delta mains	480V+20%
Installation altitude for maximum grid RMS voltage, line-to-line, grounded delta mains	4000m
Maximum grid RMS voltage, line-to-line, star point grounded mains	480V+20%
Installation altitude for maximum grid RMS voltage, line-to-line, star point grounded mains	8000m
Maximum transient peak voltage between low voltage circuit and mains	1900V
Pollution degree acc. to IEC 60664-1 outside the moulded power section	2
Overvoltage cat. acc. to IEC 60664-1 for mains	
Overvoltage cat. acc. to UL 840 within mains	I
Overvoltage cat. acc. to UL 840 between mains and ground	
Overvoltage cat. acc. to UL 840 between mains and low voltage circuit	
Basic isolation	between heat sink and mains
Reinforced isolation	between low voltage circuit and mair
Protection level acc. to IEC 60529	IPOO

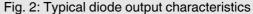
Environmental conditions acc. to IEC 60721

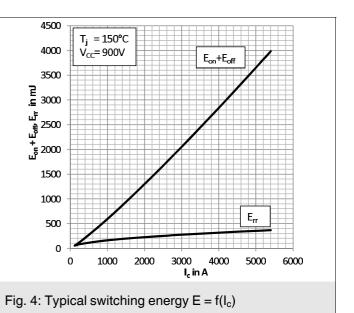

	Storage	Transportation	Operation stationary use at weather protected locations	Operating ground vehicle installations	Operating ship environment
Climatic conditions	1K2 ₍₁₎	2K2 ₍₁₎	3K3 ₍₁₎	5K1 ₍₁₎	6K1 ₍₁₎
Biological conditions	1B1	2B1	3B1	5B1	6B1
Chemically active substances (excluded: salt spray)	1C2	2C1	3C2	5C2	6C2
Mechanically active substances	1S1	281	3S1	581	6S1
Mechanical conditions	1M3	(4)	3M6 ₍₂₎	5M3 ₍₃₎	6M3
Contaminating fluids				5F1	

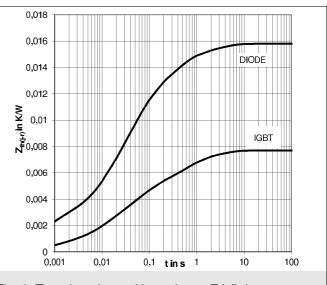
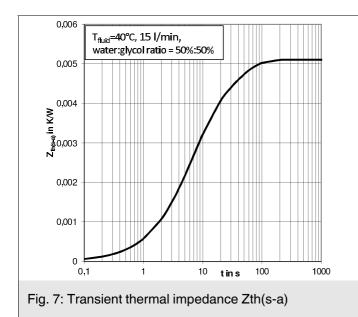
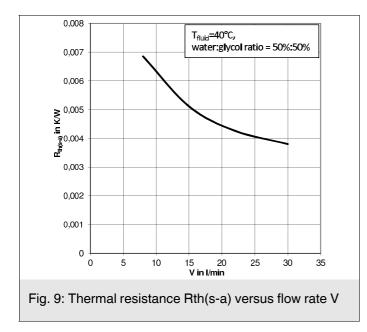

(1) expanded temperature range: -40°C / +85°C. Please note: by operation near 85°C the life time of product is reduced.

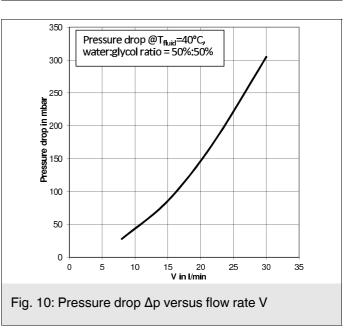

(2) 3M7 possible, but due to the mechanic load capacity of external components like DC-Link capacitors limited to 3M6 (3) 5M3 without impact of foreign bodies, stones

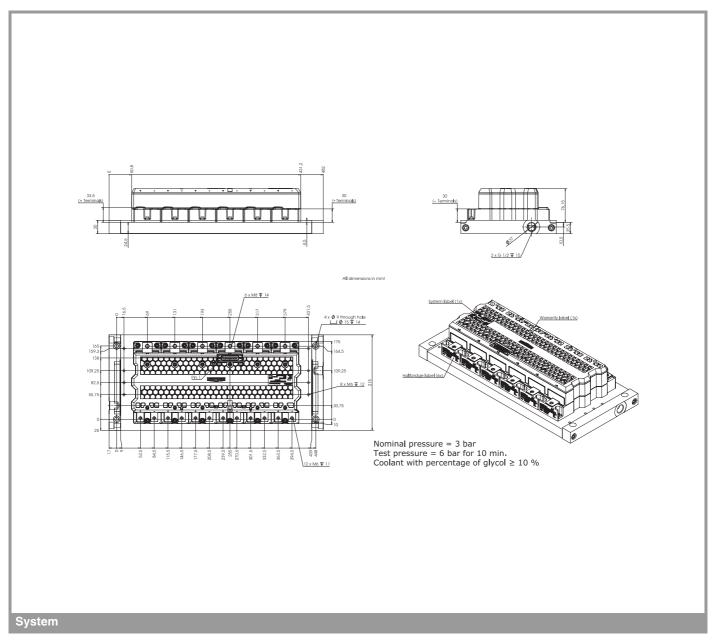

(3) SWS without impact of foreign bodies, stories


(4) no declaration due to customer-specific packing




Fig. 6: Transient thermal impedance Zth(j-r)



R _{th} [K/W]						
1	2	3	4	5		
0,0007	0,0038	0,0042	0,0013	0,0006		
0,0013	0,0067	0,0074	0,0022	0,0011		
0,0009	0,0021	0,0026	0,0016	0,0005		
0,0011	0,0033	0,0061	0,0030	0,0023		
0,0017	0,0034					
tau [s]						
1	2	3	4	5		
3,6500	0,4100	0,0650	0,0090	0,0008		
3,6500	0,4100	0,0650	0,0090	0,0008		
2,7731	0,5071	0,0555	0,0105	0,0010		
2,6032	0,3312	0,0480	0,0109	0,0006		
2,0052	0,0012	-/	,	-		
	0,0007 0,0013 0,0009 0,0011 0,0017 1 3,6500 3,6500 2,7731	0,0007 0,0038 0,0013 0,0067 0,0009 0,0021 0,0011 0,0033 0,0017 0,0034 1 2 3,6500 0,4100 3,6500 0,4100 2,7731 0,5071	Image: light width	1 2 3 4 0,0007 0,0038 0,0042 0,0013 0,0013 0,0067 0,0074 0,0022 0,0009 0,0021 0,0026 0,0016 0,0011 0,0033 0,0061 0,0030 0,0017 0,0034 tau [s] 1 2 3 4 3,6500 0,4100 0,0650 0,0090 3,6500 0,4100 0,0650 0,0090 2,7731 0,5071 0,0555 0,0105		

Fig. 8: Coefficients of thermal impedances

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

***IMPORTANT INFORMATION AND WARNINGS**

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.