

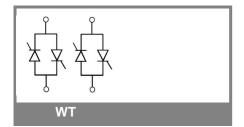
SEMITOP® 2

Antiparallel Thyristor Module

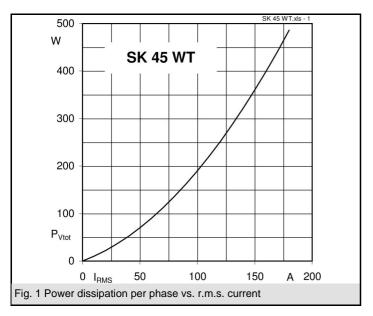
SK 45 WT

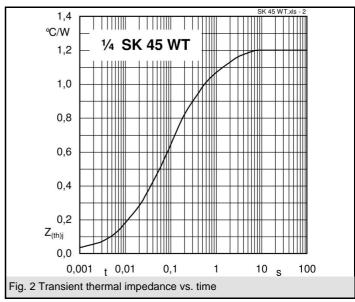
Preliminary Data

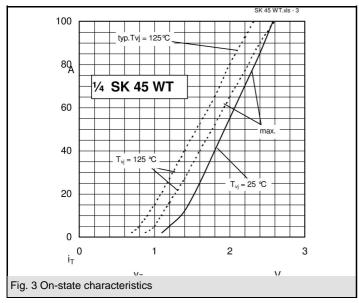
Features

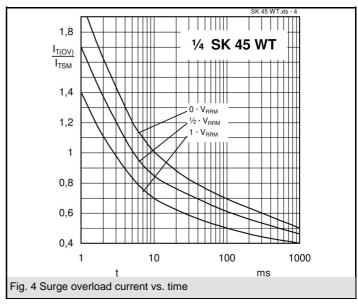

- Compact Design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

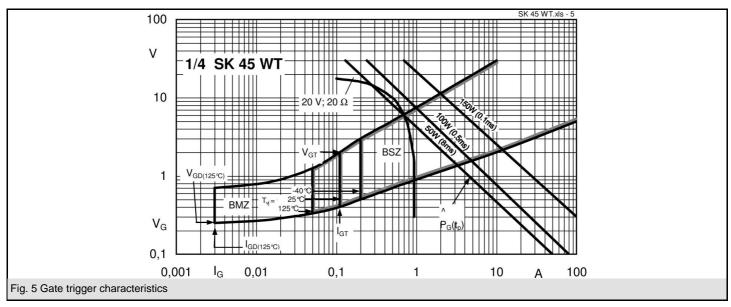
Typical Applications

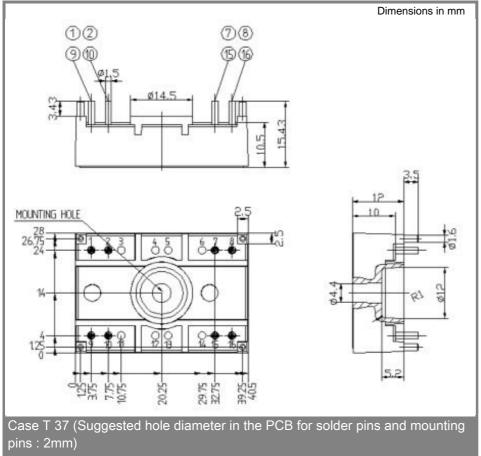

- Soft starters
- Light control (studios, theaters...)
- Temperature control

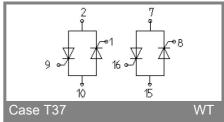

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{RMS} = 47 A A (full conduction) (T _s = 85 °C)
900	800	SK 45 WT 08
1300	1200	SK 45 WT 12
1700	1600	SK 45 WT 16


Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; T _s = 100°C	33	Α
	W1C ; sin. 180° ; T _s = 85°C	47	Α
I _{TSM}	T _{vi} = 25 °C ; 10 ms	450	Α
	T _{vi} = 125 °C ; 10 ms	380	Α
i²t	T _{vj} = 25 °C ; 8,310 ms	1000	A²s
	T _{vj} = 125 °C ; 8,310 ms	720	A²s
V _T	T _{vj} = 25 °C, I _T = 75 A	max. 1,9	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1	V
r _T	T _{vi} = 125 °C	max. 10	mΩ
$I_{DD};I_{RD}$	$T_{vj} = 25 ^{\circ}\text{C}, V_{RD} = V_{RRM}$	max. 0,5	mA
	T_{vj} = 125 °C, $V_{RD} = V_{RRM}$	max. 10	mA
t _{gd}	T_{vj} = 25 °C, I_{G} = 1 A; di_{G}/dt = 1 A/ μ s	1	μs
t_{gr}	V _D = 0,67 *V _{DRM}	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f= 5060 Hz	50	A/µs
t _q	T_{vi}^{yj} = 125 °C; typ.	120	μs
I _H	T _{vi} = 25 °C; typ. / max.	80 / 150	mA
I_{L}	$T_{vj}^{'}$ = 25 °C; R_G = 33 Ω ; typ. / max.	150 / 300	mA
V _{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 3	V
I _{GT}	T_{vi}^{s} = 25 °C; d.c.	min. 100	mA
V_{GD}	T_{vi}^{s} = 125 °C; d.c.	max. 0,25	V
I_{GD}	T _{vj} = 125 °C; d.c.	max. 3	mA
$R_{th(j-s)}$	cont. per thyristor	1,2	K/W
	sin 180° per thyristor	1,24	K/W
$R_{th(j-s)}$	cont. per W1C	0,6	K/W
. 0 -7	sin 180° per W1C	0,62	K/W
T_{vi}		-40 + 125	°C
T _{stg}		-40 + 125	°C
T _{solder}	terminals, 10s	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M_s	Mounting torque to heatsink	1,5	Nm
M_t			Nm
а			m/s²
m		13	g
Case	SEMITOP® 2	T 37	




SK 45 WT





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.