SKT 2400

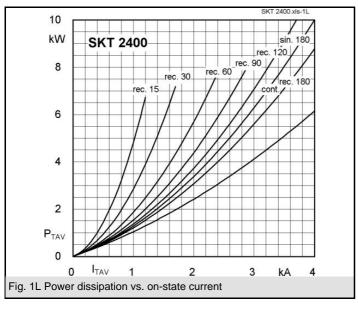
Capsule Thyristor

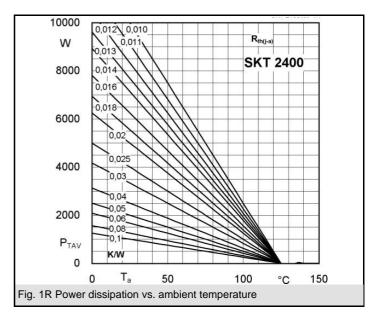
Line Thyristor

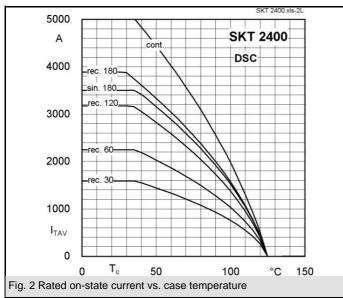
SKT 2400

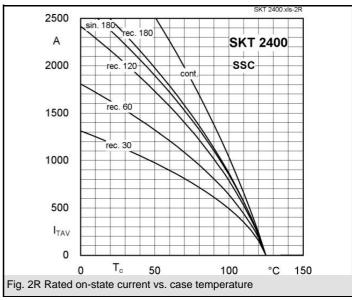
Features

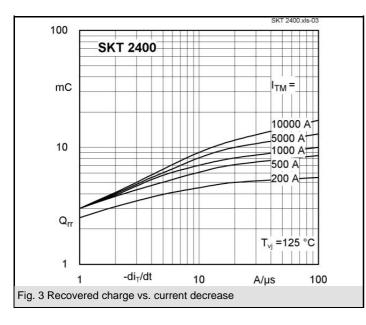
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

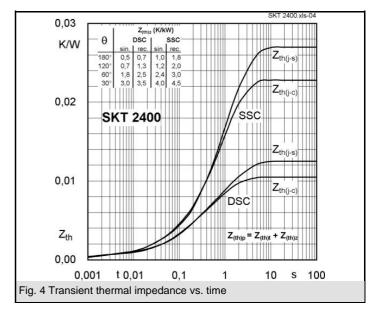

Typical Applications*

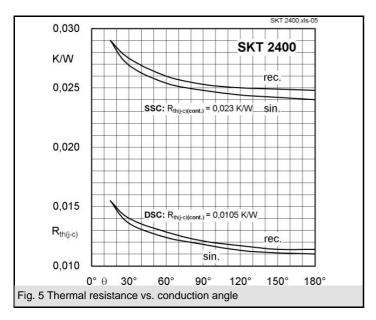

- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- · Soft starters for AC motors
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 Ω /32 W, C = 1 μ F

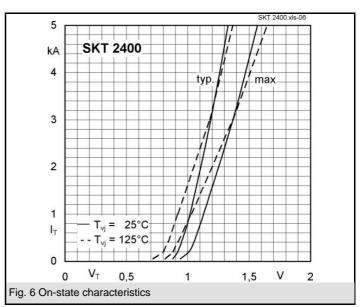

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 5700 A (maximum value for continuous operation)		
V	V	I _{TAV} = 2400 A (sin. 180; DSC; T _c = 76 °C)		
1300	1200	SKT 2400/12E		
1500	1400	SKT 2400/14E		
1700	1600	SKT 2400/16E		
1900	1800	SKT 2400/18E		

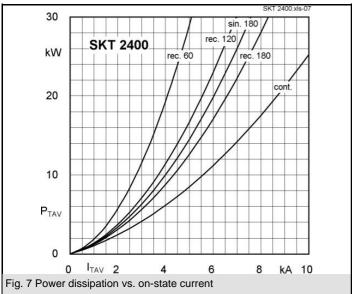

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	1520 (2100)	Α
I _D	2 x N4/250; T _a = 45 °C; B2 / B6	2650 / 3700	Α
I _{RMS}	2 x N4/250; T _a = 45 °C; W1C	3000	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	55000	Α
	T_{vi}^{3} = 125 °C; 10 ms	47000	Α
i²t	T _{vi} = 25 °C; 8,3 10 ms	15125000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	11000000	A²s
V _T	T _{vi} = 25 °C; I _T = 3000 A	max. 1,37	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,88	V
r _T	T _{vj} = 125 °C	max. 0,164	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 125 ^{\circ}\text{C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 100	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	$T_{vi}^{s} = 125 ^{\circ}\text{C}$	max. 1000	V/µs
t _q	$T_{vj} = 125 ^{\circ}\text{C}$,	200 300	μs
I _H	T_{vj} = 25 °C; typ. / max.	500 / 1000	mA
I_L	T _{vj} = 25 °C; typ. / max.	2000 / 5000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 300	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,0105	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,011 / 0,024	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,0118 / 0,025	K/W
$R_{th(c-s)}$	DSC / SSC	0,002 / 0,004	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	37 47	kN
а			m/s²
m	approx.	1000	g
Case		B 20	

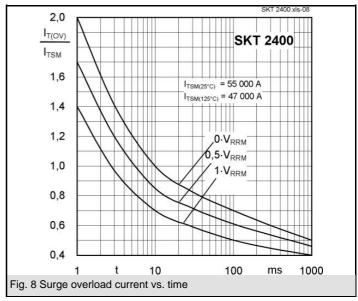


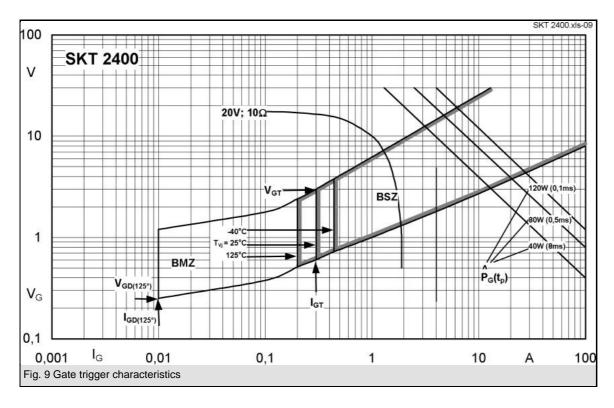


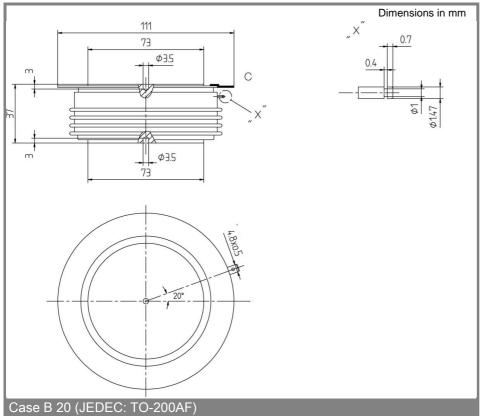









SKT 2400



^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

4 23-07-2009 MAJ © by SEMIKRON