TOSHIBA GTR MODULE SILICON N CHANNEL IGBT
MG15N6ES42
HIGH POWER SWITCHING APPLICATIONS.

Weight: 220g

EQUIVALENT CIRCUIT

961001EAA2
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the operating ranges as set feliability Handbt
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result
by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. by implication or otherwise under any intellectual property or other rig
The information contained herein is subject to change without notice.

MAXIMUM RATINGS ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

CHARACTERISTIC		SYMBOL	RATING	UNIT
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	1200	V	
Gate-Emitter Voltage	$\mathrm{V}_{\mathrm{GES}}$	± 20	V	
Collector Current	DC	I_{C}	15	A
	1 ms	I_{CP}	30	
Forward Current	DC	I_{F}	15	A
	1 ms	I_{FM}	30	
Collector Power Dissipation	P_{C}	125	W	
Junction Temperature				
Storage Temperature Range	T_{j}	150	${ }^{\circ} \mathrm{C}$	
Isolation Voltage	$\mathrm{T}_{\text {stg }}$	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$	
Screw Torque	$\mathrm{V}_{\text {Isol }}$	2500 (AC 1 minute)	V	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current	$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0$	-	-	± 10	$\mu \mathrm{A}$
Collector Cut-off Current	$\mathrm{I}_{\text {CES }}$	$\mathrm{V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0$	-	-	1.0	mA
Gate-Emitter Cut-off Voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{OFF})}$	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	3.0	-	6.0	V
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	3.0	4.0	V
Input Capacitance	$\mathrm{C}_{\text {ies }}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0, \mathrm{f}=1 \mathrm{MHz}$	-	1800	-	pF
Switching Time	t_{r}		-	0.3	0.6	$\mu \mathrm{S}$
	$\mathrm{t}_{\text {on }}$		-	0.4	0.8	
	tf_{f}		-	0.25	0.5	
	$\mathrm{t}_{\text {off }}$		-	0.8	1.5	
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0$	-	1.8	2.5	V
Reverse Recovery Time	$\mathrm{trr}_{\text {r }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=-10 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	0.2	0.5	$\mu \mathrm{s}$
Thermal Resistance	$\mathrm{R}_{\text {th (j-c) }}$	Transistor	-	-	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Diode	-	-	1.8	

