
SK 100 WT

SEMITOP[®] 3

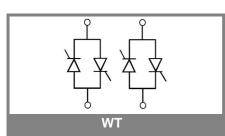
Thyristor

Target Data

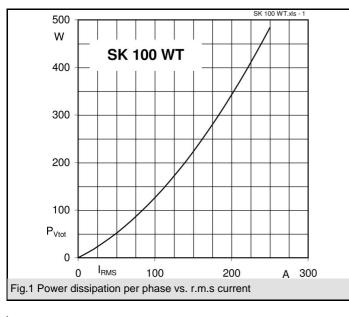
Features

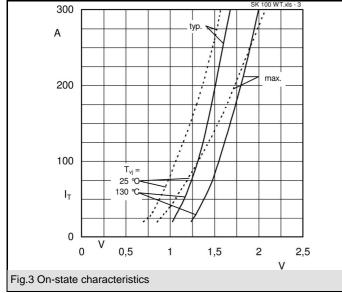
- Compact Design
- One screw mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

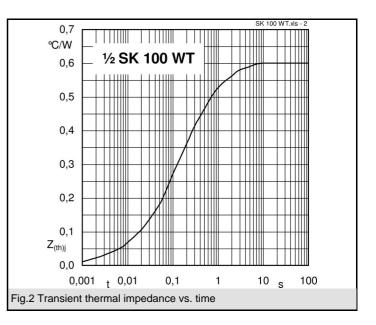
Typical Applications

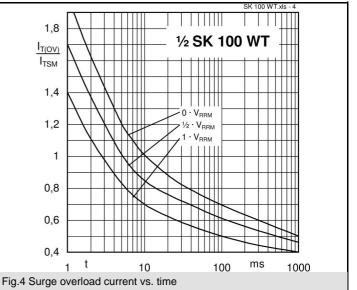

- Soft starters
- Light control (studios, theaters...)
- Temperature control

V _{RSM}	V _{RRM} , V _{DRM}	I _{RMS} = 101 A
V	V	(T _s = 85 °C)
900	800	SK 100 WT 08
1300	1200	SK 100 WT 12
1700	1600	SK 100 WT 16

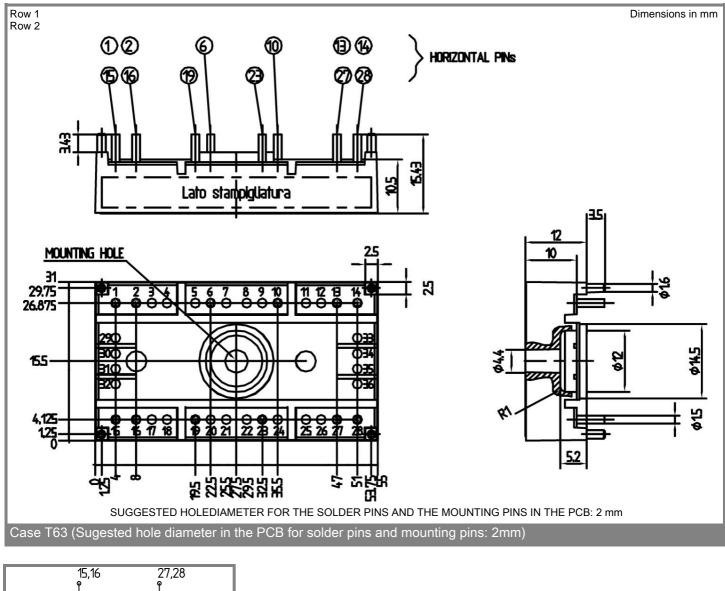

Ts = 25°C Unless otherwise specified

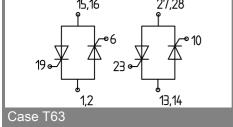

Characteristics


Symbol	Conditions	Values	Units
I _D			А
I _{TAV} /I _{FAV}			А
I _{RMS}	W1C; sin 180°; per phase at Ts = 85 (100)°C	101 (71)	А
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms	1500 (1350)	Α
l²t	T _{vj} = 25 (125) °C; 8,3 10 ms	11250 (9100)	A²s
T _{stg}		-40 +125	°C
T _{solder}	terminals, 10 s	260	°C
Thyristor			•
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = f = 5060 Hz	100	A/µs
t _q	T _{vi} = 125 °C; typ.	80	μs
I _H	T _{vi} = 25 °C; typ. / max.	100 / 200	mA
I_	T_{vi}^{3} = 25 °C; R _G = 33 Ω; typ. / max.	200 / 500	mA
V _T	$T_{vi} = 25 \text{ °C}; (I_T = 200 \text{ A}); \text{ max.}$	1,8	V
V _{T(TO)}	T _{vi} = 125 °C	max. 0,9	V
r _T	$T_{vj}^{,j} = 125 \text{ °C}$	max. 4,5	mΩ
I _{DD} ; I _{RD}	$T_{vj}^{,j}$ = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 20	mA
R _{th(j-s)}	per thyristor	0,6	K/W
T _{vi}		- 40 + 125	°C
V _{GT}	T _{vi} = 25 °C; d.c.	2	V
I _{GT}	$T_{vi}^{vj} = 25 \text{ °C; d.c.}$	100	mA
V _{GD}	T _{vi} = 125 °C; d.c.	0,25	V
I _{GD}	T _{vi} = 125 °C; d.c.	5	mA
Diode			
V _F	$T_{vi} = °C; (I_F = A); max.$		V
V _(TO)	$T_{vi} = °C$		V
r _T	$T_{vi}^{o} = °C$		mΩ
I _{RD}	$T_{vj} = °C; V_{RD} = V_{RRM}$		mA
R _{th(j-s)}			K/W
T _{vj}			°C
Mechanic	al data		
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min	3000 (2500)	V
M ₁	mounting torque	2,5	Nm
w		30	g
Case	SEMITOP [®] 3	T 63	



SK 100 WT





SK 100 WT

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.